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Motivation
• Applications	such	as:

– Sensor	networks
– Network	Traffic	Analysis
– Financial	tickers
– Transaction	Log	Analysis
– Fraud	Detection

• Require:
– Continuous	processing	of	data	streams
– Real	Time	Fashion
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Motivation

• Store	and	process	is	not	feasible
– high-speed	networks,	nanoseconds	to	handle	a	packet
– ISP	router:	gigabytes	of	headers	every	hour,…

• Data	Streaming:
– In	memory
– Bounded	resources
– Efficient	one-pass	analysis
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Main	Memory

Motivation

• DBMS	vs.	DSMS

Disk
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Database	vs.	Data	Streaming

• Problem:
– James	travels	by	car	from	A	to	B
–Mark	is	worried,	he	wants	to	know	if	he	exceeds	
the	speed	limit

• How	will	a	“database”	and	“data	streaming”	
approach	this?
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Database vs.	Data	Streaming

Start	time
Position	A

End	time
Position	B

	
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵)

𝐸𝑛𝑑	𝑡𝑖𝑚𝑒	 − 𝑆𝑡𝑎𝑟𝑡	𝑇𝑖𝑚𝑒
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Database vs.	Data	Streaming

1. First	the	data,	then	
the	query

2. Need	to	store	
information
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Database	vs.	Data	Streaming

1. First	the	query,	
then	the	data

2. “Continuous”	result
3. No	need	to	store	
information
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data	stream:	unbounded	sequence	of	tuples	sharing	the	same	schema

14

Example:	vehicles’	speed	reports

time

Field Field
vehicle	id text
time	(secs) text
speed	(Km/h) double
X	coordinate double
Y	coordinate double

A 8:00 55.5 X1 Y1

Let’s	assume	each	source	
(e.g.,	vehicle)	produces	
and	delivers	a	timestamp	
sorted	stream

A 8:07 34.3 X3 Y3

A 8:03 70.3 X2 Y2



continuous	query	(or	simply	query):	Directed	Acyclic	Graph	(DAG)	of	
streams	and	operators
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data	streaming	operators

Two	main	types:
• Stateless	operators

– do	not	maintain	any	state
– one-by-one	processing
– if	they	maintain	some	state,	such	state	does	not	evolve	

depending	on	the	tuples	being	processed
• Stateful	operators

– maintain	a	state	that	evolves	depending	on	the	tuples	being	
processed

– produce	output	tuples	that	depend	on	multiple	input	tuples
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stateless	operators
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Filter ...

Map

Union...

Filter	/	route	tuples	based	on	one	(or	more)	conditions

Transform	each	tuple

Merge	multiple	streams	(with	the	same	schema)	into	one



stateful	operators
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Aggregate	information	from	multiple	tuples	
(e.g.,	max,	min,	sum,	...)

Join	tuples	coming	from	2	streams	given	a	certain	predicate

Aggregate

Join



Wait	a	moment!	

if	streams	are	unbounded,	how	can	we	aggregate	or	join?
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windows and	stateful	analysis	[18]

Stateful	operations	are	done	over	windows:
• Time-based	(e.g.,	tuples	in	the	last	10	minutes)
• Tuple-based	(e.g.,	given	the	last	50	tuples)
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time
[8:00,9:00)

[8:20,9:20)

[8:40,9:40)

Usually	applications	rely	on	time-based	sliding	windows



time-based	sliding	window	aggregation	(count)
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Counter:	4

time
[8:00,9:00)

8:05 8:15 8:22 8:45 9:05

Output:	4

Counter:	1
Counter:	2

Counter:	3

Counter:	3

time

8:05 8:15 8:22 8:45 9:05

[8:20,9:20)

we	assumed	each	source	
produces	and	delivers	a	
timestamp	sorted	stream!
What	happens	if	this	is	
not	the	case?



time-based	sliding	window	joining
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sample	query

For	each	vehicle,	raise	an	alert	if	the	speed	of	the	latest	report	is	
more	than	2	times	higher	than	its	average	speed	in	the	last	30	days.
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time

A 8:00 55.5 X1 Y1 A 8:07 34.3 X3 Y3

A 8:03 70.3 X2 Y2
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Remove	
unused	
fields

Map

Field
vehicle	id
time	(secs)
speed	(Km/h)
X	coordinate
Y	coordinate

Field
vehicle	id
time	(secs)
speed	(Km/h)

Compute	average	
speed	for	each	

vehicle	during	the	
last	30	days

Aggregat
e

Field
vehicle	id
time	(secs)
avg	speed	
(Km/h)

Join

Check	
condition

Filte
r

Field
vehicle	id
time	(secs)
speed	(Km/h)

Join	on	
vehicle	id

Field
vehicle	id
time	(secs)
avg	speed	
(Km/h)
speed	(Km/h)

sample	query
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M A J F

sample	query

Notice:
• the	same	semantics	can	be	defined	in	several	ways	(using	

different	operators	and	composing	them	in	different	ways)
• Using	many	basic	building	blocks	can	ease	the	task	of	distributing	

and	parallelizing	the	analysis	(more	in	the	following...)
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Centralized	SPEs
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Distributed	SPEs
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Inter-operator	parallelism



Parallel	SPEs
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… …

Intra-operator	parallelism

Over-provisioning	or	under-provisioning?



Elastic	SPEs
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… …

+ +

Scale	up



Elastic	SPEs
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… …

- -

Scale	down
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Online	and	Scalable	Data	Validation	in	Advanced	Metering	Infrastructures

Demand/Response,	
Real-time	pricing,	
Intrusion	Detection	

…

Noisy	and	Lossy	data:	bad-calibrated	/	faulty	
devices,	lossy	communication,	malicious	users,	…

How	can	we	validate	data	given	that…
• There	is	a	large	volume	of	continuous data	

demanding	for	distributed	and	parallel	analysis
• Validation	rules	depend	on	installation-specific	

features	such	as	brands,	devices,	protocols,	…
• System	experts	should	define	installation-

specific	validation	rules?
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Why	Streaming-based	data	Validation?

Expressive

Online

Parallel	&	
Distributed
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Sample	Streaming-based	Data	Validation:	
Interpolate	missing	consumption	values

Expressive

Online

Field
Device
Time
Consumption

Field
Device
Time1
Consumption1
Time2
Consumption2

Match	
consecutive	
readings	from	
each	meter

Aggregate

Field
Device
Time1
Consumption1
Time2
Consumption2

Forward	if	time	
distance	exceeds	a	
certain	threshold

Filter

Field
Device
Time
Consumption

Interpolate	
missing	
values

Map
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Sample	Streaming-based	Data	Validation:	
Interpolate	missing	consumption	values

Expressive

Online

Parallel	&	
DistributedA F M

A F M

A F M

A F M

F

M

A

A

A

F

F
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Why	METIS?

Some	others	are	meant	
to	go	unnoticed
(e.g.,	energy	theft)

Some	attacks	are	meant	
to	be	detected	(e.g.,	DoS)

How	can	we	detect	them	given	that…
• …	there	is	a	large	volume	of	continuous data	

demanding	for	distributed	and	parallel	analysis
• …	Most	data	is	local	to	the	devices
• …	Such	attacks	are	not	documented	
• …	Each	AMI	relies	on	its	brands,	devices,	

protocols	(i.e.,	system	expert’s	knowledge	
plays	a	key	role)

Advanced	Metering	Infrastructures	(AMIs)
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METIS	overview

Energy	exfiltration	
attack!

• Distributed		
analysis

• Leverage	expert’s	
knowledge
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METIS	overview

Energy	exfiltration	
attack!

AMIs	evolve	slowly	and	have	limited	heterogeneity.
Let’s	learn	which	messages	are	expected	and	which	are	not!

What	influences	an	expected	message?

...

Let’s	use	a	Bayesian	Network!
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METIS	overview

Energy	exfiltration	
attack!

Distributed	analysis!
Leverage	expert’s	knowledge!

Can	be	automatically	translated	to	a	
data	streaming	continuous	query!
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METIS	overview

Energy	exfiltration	
attack!

We	can	identify	suspicious	messages,	
millions	of	messages	/	day	exchanged	by	devices…

Distributed	analysis!
Leverage	expert’s	knowledge!

Number	of	alarms
Number	of	days
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METIS	overview

Energy	exfiltration	
attack!

• Data	streaming	is	the	underlying	
processing	paradigm	àDistributed	
analysis!

• Intuitive	graphical	model	to	spot	suspicious	
events	àLeverage	expert’s	knowledge!

• Modular
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An	overview	of	Data	Streaming
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Questions?



An	overview	of	Data	Streaming

• Something	to	read:
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http://www.cambridge.org/se/academic/subjects/engineeri
ng/communications-and-signal-processing/fundamentals-
stream-processing-application-design-systems-and-analytics
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